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' This Talk

m A futuristic systems perspective

o Scalable architectures to guide
device development il o ﬂd Hum sm

o Software systems to enable pre-
machine, large-scale applications
work
= Eg. 10° increase in efficiency

in quantum chemistry (Microsoft)
[arXiv:1403.1539v2]

o Apply tools and ideas to 100-qubit
machine




Progress in QC Algorithms
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‘ Outline

m Lessons Learned

o Specialization for reliability, parallelism, and
performance

o Managing compiler resources for deep
optimization
o Dynamic code generation for arbitrary rotations

m Future research
o Retarget SW tools for surface codes
o Validation of quantum programs
o What can we do with a 100-qubit machine? (CACM 2010)
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LESSON 1: SPECIALIZATION
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“Quantum FPGA”

Classical Control Processors

Classical Control Processors

[Metodi et al, Micro05]



‘ Limited Parallelism

60 Unlimited resources -
— 15 operations in parallel
3
- |
©
¥
©
p_‘ -
=
-
" |
=
o)
-
IS
©
u
Q
0, -
@)

5 10 15 20
Time in Cycles
O The Draper

Carry-Lookahead Adder (64-qubit Adder)




‘ Specialization
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‘ Area Reduced
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‘ Faster Computation

1 logical qubit O

\

Level 1:
7 physical qubits 0000000

Level 2:
49 physical qubits

Reliability increases
doubly
exponentially.

Exponentially
slower.

Exponentially
greater resources.

Concatenated Steane Code
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‘ Error-Correction Hierarchy

Cache @ Level 1 /Compute @ Level 1
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‘ Performance Benefits

Factor of
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LESSION 2:
MANAGING COMPILER

RESOURCES j




‘ Deep Optimization

s QC similar to circuit synthesis for ASICs

= Program inputs known at compile time

o Enables compiler optimizations
= Constant propagation
= Loop unrolling

m Scarce resources
o Every qubit and gate is important

06:20 14



‘ Execution Model




‘ The Scattold LLanguage and Compiler

s Extended C
: 1 #include "gates.h"
o No pointers 2 module main () {
Quantum datatypes int i=0;
, greg extarget[4];
Extensible gates qreg excontrol[4]:
Parallel loops

forall(i=0; i<4; i++) {
_ _ CNOT (extarget[i],excontroll[i]);
Reversible logic )
synthesis for }
classical functions
(includes fixed point
arithmetic)

©OoONO OLHA~, W

[Heckey et al, ASPLOS 2015] 16



Tool Flow
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https://github.com/epiqc/ScaffCC
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| Algorithms in Scaffold

Algorithm

Boolean Formula

Linear Systems

Binary Welded Tree

Class Number

Triangle Finding

Shortest Vector Problem

Ground State Estimation

Shor’s Algorithm

Grover’s Algorithm (invert SHA-1)
Ising Model

Lines of
Code

479
1741
608
226
1231
539
554
1055
388
113
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‘ Tool Output: Resource Estimation

= Binary Welded Tree Call Graph

o Shows quantum resources used at each module
o Maximum qubits used: 911 (for n=300)

SETCHILD
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‘ Effect of Remodularization

Based on resource
analysis, flatten
modules with size
less than a
threshold

Limited by memory
on compilation
machine

Critical Path Length Estimate
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‘ Mapping Qubits
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Grovers BWT GSE BF TFP

= Modified heuristic graph partitioner
o based on Metis [Karypis and Kumar, 19935]

Shors
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‘ Longest Path First Scheduling

Strategy: Minimize qubit motion
by assigning long dependence
chains to a single compute region,
where they can compute locally
with little communication.




‘ Tool Output: Speedup Estimates
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‘ Small-Scale Simulation Path

s Simulation effort at TU Delft
s Takes Scaffold QASM output
= Optimized for Intel supercomputing resources
http://www.Xxpu-project.net/gx/download.html
s Other closed-source tools: LIQU|d>
http://qithub.com/msr-quarc/Liquid

'i';U Delft (I@

https://qgithub.com/epiqc/ScaffCC ”




LESSON 3:
DYNAMIC CODE
GENERATION

06:20
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‘ Quantum Code Generation for
Arbitrary Rotations

m Arbitrary rotations are important, difficult to
compile for, and expensive to execute

= Unique sequence for every distinct rotation
o Can be 4 TB of code!

s Sometimes need dynamic code generation
o Rotation angles determined at runtime
a Large code size

[Kudrow et al, ISCA 2013]
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‘ Dynamic Code Generation

27
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Rotation Decomposition

H gate
T gate
X gate
H gate
Tt gate




Rotation Decomposition

Scaffold QPL QASM

module RotatePhi(gbit q) { module RotatePhi(gbit q) {

Rz(q, Phi);«_ Tq

} Rotation gate Z q

Tq\

Zq Decomposition




‘ Precomputed Library

Example: binary construction

Generate library: Concatenate appropriate sequences

to approximate desired angle:

THT,ZTZH,..




‘ Results — Compilation Time

Compilation time (seconds)
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‘ Results — Compilation Time

Compilation time (seconds)
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‘ Dynamic Compilation Summary

Up to 100,000X speedup for dynamic
compilation with 5X increase in sequence
length (T-gate depth)




FUTURE WORK 1:
TARGETING
SURFACE CODES

06:20
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Surface vs Concatenated Codes

m Less sensitive to communication distance

m Sensitive to braid crossings
a Serializes communication
o Qubit mapping for locality is important

s Network routing heuristics for scalable
scheduling
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FUTURE WORK 2:
PROGRAM CORRECTNESS




How do I know if my QC program is
correct?

m  Need: Specification language for QC
algorithms

s Check implementation against the
specification
o Simulation for small problem sizes (~30
qubits)
Symbolic execution for larger problems
Type systems
Model checking
o Certified compilation passes
s Compiler checks general quantum
properties
o No-cloning, entanglement, uncomputation
m Checks based on programmer assertions
where possible

0 0 O




FUTURE WORK 3:
ENABLING A PRACTICAL-
SCALE QUANTUM
COMPUTER (EPIQC)




“Practical” Quantum Computing

m Algorithms and Software for a 100-qubit
quantum computer

a Chong, Reppy, Franklin, Schuster (UChicago),
Shor, Farhi, Harrow (MIT), Brown (GATech),
Harlow (UCSB)

m Fill the gap between theory and experiment

o Expose physical effects to software and
algorithms

o Exhaustive optimizations
o Compiler analysis and partial simulation
for correctness

(Schuster Lab)
> = i
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‘ Summary

s QC is at an exciting time

m Software and architecture can generate key
insights and accelerate progress

= With the right models and abstractions,
classical techniques can have significant
impact

https://qgithub.com/epiqc/ScaffCC
http://people.cs.uchicago.edu/~ftchong |
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